Рюмина Е.В., Карпов А.А.
СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ УСТРАНЕНИЯ ДИСБАЛАНСА КЛАССОВ ЭМОЦИЙ В ВИДЕОДАННЫХ ВЫРАЖЕНИЙ ЛИЦ





Список литературы
1. Pandey S.K., Janghel R.R. Automatic detection of arrhythmia from imbalanced ECG database using CNN model with SMOTE // Australasian Physical & Engineering Sciences in Medicine. 2019. V. 42. N 4. P. 1129–1139. doi: 10.1007/s13246-019-00815-9
2. Han W., Huang Z., Li S., Jia Y. Distribution-sensitive unbalanced data oversampling method for medical diagnosis // Journal of Medical Systems. 2019. V. 43. N 2. P. 39. doi: 10.1007/s10916-018-1154-8
3. Ahammad J., Hossain N., Alam M.S. Credit card fraud detection using data pre-processing on imbalanced data - Both oversampling and undersampling // Proc. of the International Conference on Computing Advancements. 2020. doi: 10.1145/3377049.3377113
4. Velichko A., Karpov A. A study of data scarcity problem for automatic detection of deceptive speech utterances // CEUR Workshop Proceedings. 2020. V. 2552. P. 38–46.
5. Sun J., Lang J., Fujita H., Li H. Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and bagging with differentiated sampling rates // Information Sciences. 2018. V. 425. P. 76–91. doi: 10.1016/j.ins.2017.10.017
6. Leong C.K. Credit risk scoring with bayesian network models // Computational Economics. 2016. V. 47. N 3. P. 423–446. doi: 10.1007/s10614-015-9505-8
7. Li S., Deng W. Real world expression recognition: A highly imbalanced detection problem // Proc. 9th International Conference on Biometrics (ICB 2016). 2016. P. 7550074. doi: 10.1109/ICB.2016.7550074
8. Kaya H., Karpov A.A. Introducing weighted kernel classifiers for handling imbalanced paralinguistic corpora: Snoring, addressee and cold // Proc. 18th Annual Conference of the International Speech Communication Association (INTERSPEECH 2017). 2017. P. 3527–3531. doi: 10.21437/Interspeech.2017-653
9. Johnson J.M., Khoshgoftaar T.M. Survey on deep learning with class imbalance // Journal of Big Data. 2019. V. 6. N 1. P. 27. doi: 10.1186/s40537-019-0192-5
10. Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: synthetic minority over-sampling technique // Journal of Artificial Intelligence Research. 2002. V. 16. P. 321–357. doi: 10.1613/jair.953
11. He H., Bay Y., Garcia E.A., Li S. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning // Proc. of the IEEE International Joint Conference on Neural Networks (IJCNN 2008). 2008. P. 1322–1328. doi: 10.1109/IJCNN.2008.4633969
12. Liu Z.-T., Wu B.-H., Li D.-Y., Xiao P., Mao J.-W. Speech emotion recognition based on selective interpolation synthetic minority over-sampling technique in small sample environment // Sensors. 2020. V. 20. N 8. P. 2297. doi: 10.3390/s20082297
13. Li S., Deng W. Deep emotion transfer network for cross-database facial expression recognition // Proc. 24th International Conference on Pattern Recognition (ICPR 2018). 2018. P. 3092–3099. doi: 10.1109/ICPR.2018.8545284
14. Rashid T.A. Convolutional neural networks based method for improving facial expression recognition // Advances in Intelligent Systems and Computing. 2016. V. 530. P. 73–84. doi: 10.1007/978-3-319-47952-1_6
15. Yi W., Sun Y., He S. Data augmentation using conditional GANs for facial emotion recognition // Proc. of the Progress in Electromagnetics Research Symposium (PIERS-Toyama 2018). 2018. P. 710–714. doi: 10.23919/PIERS.2018.8598226
16. Cao H., Cooper D.G., Keutmann M.K., Gur R.C., Nenkova A., Verma R. CREMA-D: Crowd-sourced emotional multimodal actors dataset // IEEE Transactions on Affective Computing. 2014. V. 5. N 4. P. 377–390. doi: 10.1109/TAFFC.2014.2336244
17. Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data // IEEE Transactions on Systems, Man and Cybernetics. 1972. V. 2. N 3. P. 408–421. doi: 10.1109/TSMC.1972.4309137
18. Tomek I. Two modifications of CNN // IEEE Transactions on Systems, Man and Cybernetics. 1976. V. 6. N 11. P. 769–772. doi: 10.1109/TSMC.1976.4309452
19. Kubat M., Matwin S. Addressing the curse of imbalanced training sets: one-sided selection // Proc. 14th International Conference on Machine Learning. 1997. P. 179–186.
20. Zhang I., Mani I. kNN approach to unbalanced data distributions: a case study involving information extraction // Proc. of Workshop on Learning from Imbalanced Datasets. 2003. P. 42–48.
21. Lemaître G., Nogueira F., Aridas C.K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning // Journal of Machine Learning Research. 2017. V. 18. P. 559–563.
22. Han H., Wang W.-Y., Mao B.-H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning // Lecture Notes in Computer Science. 2005. V. 3644. P. 878–887. doi: 10.1007/11538059_91
23. Nguyen H.M., Cooper E.W., Kamei K. Borderline over-sampling for imbalanced data classification // International Journal of Knowledge Engineering and Soft Data Paradigms (IJKESDP). 2011. V. 3. N 1. P. 4–21. doi: 10.1504/IJKESDP.2011.039875
24. Déniz O., Bueno G., Salido J., De La Torre F. Face recognition using histograms of oriented gradients // Pattern Recognition Letters. 2011. V. 32. N 12. P. 1598–1603. doi: 10.1016/j.patrec.2011.01.004
25. Cootes T.F., Taylor C.J., Cooper D.H., Graham J. Active shape models-their training and application // Computer Vision and Image Understanding. 1995. V. 61. N 1. P. 38–59. doi: 10.1006/cviu.1995.1004
26. King D.E. Dlib-ml: A machine learning toolkit // Journal of Machine Learning Research. 2009. V. 10. P. 1755–1758.
27. Van Gent P. Emotion Recognition Using Facial Landmarks Python DLib and OpenCV // A tech blog about fun things with Python Embed. Electron. 2016 [Электронный ресурс]. URL: http://www.paulvangent.com/2016/08/05/emotion-recognition-using-facial-landmarks/ (дата обращения: 19.07.2020).
28. Mollahosseini A., Hasani B., Mahoor M.H. AffectNet: A database for facial expression, valence, and arousal computing in the wild // IEEE Transactions on Affective Computing. 2019. V. 10. N 1. P. 18–31. doi: 10.1109/TAFFC.2017.2740923
29. Carrier P. L., Courville A., Goodfellow I.J., Mirza M., Bengio Y. FER-2013 face database: Technical report 1365. Universit de Montral, 2013.
30. Li S., Deng W., Du J. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild // Proc. 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). 2017. P. 2584–2393. doi: 10.1109/CVPR.2017.277
31. Ghaleb E., Popa M., Asteriadis S. Metric learning-based multimodal audio-visual emotion recognition // IEEE Multimedia. 2020. V. 27. N 1. P. 37–48. doi: 10.1109/MMUL.2019.2960219


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2020 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика