Афанасьев М.Я., Федосов Ю.В., Крылова А.А., Шорохов С.А., Зименко К.В.
ПОМЕХОЗАЩИЩЕННОСТЬ БЕСПРОВОДНЫХ ПЕРСОНАЛЬНЫХ СЕТЕЙ В УСЛОВИЯХ ЦИФРОВОГО ПРОИЗВОДСТВА





Список литературы
1. Aheleroff S., Philip R., Zhong R.Y., Xu X. The degree of mass personalisation under Industry 4.0 // Procedia CIRP. 2019. V. 81. P. 1394–1399. doi: 10.1016/j.procir.2019.04.050
2. Mehta B.R., Reddy Y.J. Industrial Process Automation Systems: Design and Implementation. Chapter 14. Wireless communication. Butterworth-Heinemann, 2015. P. 417–457.
3. Stenumgaard P., Chilo J., Ferrer-Coll J., Angskog P. Challenges and conditions for wireless machine-to-machine communications in industrial environments // IEEE Communications Magazine. 2013. V. 51. N 6. P. 187–192. doi: 10.1109/MCOM.2013.6525614
4. Ängskog P., Karlsson C., Coll J.F., Chilo J., Stenumgaard P. Sources of disturbances on wireless communication in industrial and factory environments // Proc. of the Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC 2010). Beijing, China. 2010. P. 281–284. doi: 10.1109/APEMC.2010.5475862
5. Li H., Liu L., Li Y., Yuan Z., Zhang K. Measurement and characterization of electromagnetic noise in edge computing networks for the industrial Internet of Things // Sensors (Switzerland). 2019. V. 19. N 14. P. 3104. doi: 10.3390/s19143104
6. Saaifan K.A., Henkel W. Measurements and modeling of impulse noise at the 2.4 GHz wireless LAN band // Proc. 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP 2017). Montreal, Canada. 2017. P. 86–90. doi: 10.1109/GlobalSIP.2017.8308609
7. Takaya K., Maeda Y., Kuwabara N. Experimental and theoretical evaluation of interference characteristics between 2.4-GHz ISM-band wireless LANs // Proc. of the 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record. Denver, CO, USA. 1998. V. 1. P. 80–85. doi: 10.1109/ISEMC.1998.750064
8. Guo W., Healy W.M., Zhou M. Impacts of 2.4-GHz ISM band interference on IEEE 802.15.4 wireless sensor network reliability in buildings // IEEE Transactions on Instrumentation and Measurement. 2012. V. 61. N 9. P. 2533–2544. doi: 10.1109/TIM.2012.2188349
9. Zheng G., Han D., Zheng R., Schmitz C., Yuan X. A link quality inference model for IEEE 802.15.4 Low-Rate WPANs // Proc. 54th IEEE Global Telecommunications Conference (GLOBECOM 2011). Houston, TX, USA. 2011. P. 6133782. doi: 10.1109/GLOCOM.2011.6133782
10. Konings D., Faulkner N., Alam F., Noble F., Lai E.M. The effects of interference on the RSSI values of a ZigBee based indoor localization system // Proc. 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP 2017).  Auckland, New Zealand. 2017. P. 1–5. doi: 10.1109/M2VIP.2017.8211460
11. Cheffena M. Propagation channel characteristics of industrial wireless sensor networks [wireless corner] // IEEE Antennas and Propagation Magazine. 2016. V. 58. N 1. P. 66–73. doi: 10.1109/MAP.2015.2501227
12. Musǎloiu-E.R., Terzis A. Minimising the effect of WiFi interference in 802.15.4 wireless sensor networks // International Journal of Sensor Networks. 2008. V. 3. N 1. P. 43–54. doi: 10.1504/IJSNET.2008.016461


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2020 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика