Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2024-24-6-962-971
УДК 004.021
Усольцев Д.А. и др.
Применение марковских цепей Монте-Карло и машинного обучения для поиска активного модуля в биологических графах
Применение марковских цепей Монте-Карло и машинного обучения для поиска активного модуля в биологических графах
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Усольцев Д.А., Молотков И.И., Артемов Н.Н., Сергушичев А.А., Шалыто А.А. Применение марковских цепей Монте-Карло и машинного обучения для поиска активного модуля в биологических графах // Научно-технический вестник информационных технологий, механики и оптики. 2024. Т. 24, № 6. С. 962–971. doi: 10.17586/2226-1494-2024-24-6-962-971
Аннотация
Введение. В биологии информация о взаимодействии изучаемых белков или генов может быть представлена в виде биологического графа. Связный подграф, вершины которого выполняют общую биологическую функцию, называется активным модулем. Марковская цепь Монте-Карло (MCMC) — эффективный алгоритм для идентификации активного модуля в биологических графах. В контексте белок-белковых взаимодействий точное нахождение активного модуля позволяет определить, какое нарушение белковой функции приводит к возникновению определенных изменений (например, болезни) в биологической системе (клетке/организме). Показано, что применение MCMC совместно с обучением моделей, учитывающих топологию графа, обеспечивает более высокую точность определения активного модуля. Метод. В работе независимо используется граф белок-белковых взаимодействий (InWebIM) и сеть функциональных ассоциаций между генами GeneMANIA для обучения модели и сравнения с известным методом на основе MCMC. В качестве методов поиска активного модуля использовалась комбинация из MCMC и метода машинного обучения — градиентного бустинга — xgboost. Основные результаты. Совместное применение метода на основе MCMC и xgboost повышает точность нахождения активного модуля по сравнению с методом на основе MCMC на симулированных данных. Обсуждение. Повышение точности поиска активного модуля имеет важное значение для исследования биологических механизмов заболеваний и обнаружения отдельных белков, функционально связанных с возникновением заболеваний.
Ключевые слова: графы, машинное обучение, белковые сети, MCMC, активный модуль