doi: 10.17586/2226-1494-2015-15-5-775-781


SIMULATION OF FORWARD AND BACKWARD WAVES EVOLUTION OF FEW-CYCLE PULSES PROPAGATING IN AN OPTICAL WAVEGUIDE WITH DISPERSION AND CUBIC NONLINEARITY OF ELECTRONIC AND ELECTRONIC-VIBRATION NATURE

L. S. Konev, A. A. Tochilkin, Y. A. Shpolyanskiy


Read the full article  ';
Article in Russian

For citation: Konev L.S., Tochilkin A.A., Shpolyanskiy Yu.A. Simulation of forward and backward waves evolution of few-cycle pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 5, pp. 775-781.

Abstract

Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.


Keywords: few-cycle pulse, femtosecond pulse, backward wave, electronic-vibration nonlinearity, cubic nonlinearity.

References
1. Kozlov S.A., Samartsev V.V. Osnovy Femtosekundnoi Optiki [Basics of Femtosecond Optics]. Moscow, Fizmatlit Publ., 2009, 292 p.
2. Brabec T., Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Reviews of Modern Physics, 2000, vol. 72, no. 2, pp. 545–591.
3. Bespalov V.G., Kozlov S.A., Shpolyanskiy Yu.A., Walmsley I.A. Simplified field wave equations for the nonlinear propagation of extremely short light pulses. Physical Review A – Atomic, Molecular, and Optical Physics, 2002, vol. 66, no. 1, pp. 138111–1381110.
4. Kolesik M., Moloney J.V., Mlejnek M. Unidirectional optical pulse propagation equation. Physical Review Letters, 2002, vol. 89, no. 28, pp. 283902/1–283902/4.
5. Rozanov N.N. About the regime of unidirectional propagation of radiation in nonlinear media. Optics and Spectroscopy, 2008, vol. 104, no. 2, pp. 248–252. doi: 10.1007/s11449-008-2017-6
6. Rozanov N.N. On localized structures of radiation in a wide-aperture laser with a transverse inhomogeneity. Optics and Spectroscopy, 2009, vol. 106, no. 3, pp. 403–406. doi: 10.1134/S0030400X09030151
7. Kinsler P., Radnor S.B.P., New G.H.C. Theory of directional pulse propagation. Physical Review A – Atomic, Molecular, and Optical Physics, 2005, vol. 72, no. 6, art. 063807. doi: 10.1103/PhysRevA.72.063807
8. Konev L.S., Shpolyanskiy Yu.A. Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber. Proceedings of SPIE - The International Society for Optical Engineering, 2013, vol. 8772, art. 87720P. doi: 10.1117/12.2017075
9. Konev L.S., Shpolyanskiì Yu.A. Calculating the field and spectrum of the reverse wave induced when a femtosecond pulse with a superwide spectrum propagates in an optical waveguide. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, vol. 81, no. 1, pp. 6–11. doi: 10.1364/JOT.81.000006
10. Bespalov V.G., Kozlov S.A., Shpolyanskii Yu.A Method for analyzing the propagation dynamics of femtosecond pulses with a continuum spectrum in transparent optical media. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2000, vol. 67, no. 4, pp. 303–308.
11. Agrawal G.P. Nonlinear Fiber Optics. 3rd ed. Academic Press, 2001.
12. Platonenko V.T., Stamenov K.V., Khokhlov R.V. Induced Raman scattering in strong fields. Sov. Phys. JEPT, 1966, vol. 22, no. 4, pp. 827–831.
13. Stolen R.H., Gordon J.P., Tomlinson W.J., Haus H.A. Raman response function of silica-core fibers. Journal of the Optical Society of America B: Optical Physics, 1989, vol. 6, no. 6, pp. 1159–1166.
14. Akhmanov S.A., Vysloukh V.A., Chirkin A.S. Optika Femtosekundnykh Lazernykh Impul'sov [Optics of Femtosecond Laser Pulses]. Moscow, Nauka Publ., 1988, 312 p.
15. Shpolyanskiy Y.A. Envelope, phase, and frequency of ultrabroadband signal in a transparent medium. Journal of Experimental and Theoretical Physics, 2010, vol. 111, no. 4, pp. 557–566. doi: 10.1134/S1063776110100055


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика