Keywords: image processing, segmentation, image sharpness, texture features, focus features, surface, industrial camera.
Acknowledgements. The research project, which forms the basis of this paper, is funded by the Thuringian Ministry of Economics, Technology
and Work, the European Social Fund (ESF) and German Academic Exchange Service (DAAD).
References
1. Trambitckii K., Anding K., Musalimov V., Linss G. Colour based fire detection method with temporal intensity variation filtration. Journal of Physics: Conference Series, 2015, vol. 588, no. 1, art. 012038. doi:10.1088/1742-6596/588/1/012038
2. Kuznetsov A.O., Musalimov V.M., Saenko A.P., Trambitskii K.V. Application of image analysis algorithms for fire detection. Izvestiya vuzov. Priborostroenie, 2012, vol. 55, no. 6, pp. 51–56. (In Russian)
3. Trambitskii K.V., Musalimov V.M. Obnaruzhenie Ognya na Videoizobrazhenii s Fil'tratsiei po Izmeneniyu Intensivnosti [Fire detection in the video image filtering the change in intensity]. Certificate of state registration of computer programs, no. 2015615131, 2015.
4. Eskicioglu A.M., Fisher P.S. Image quality measures and their performance. IEEE Transactions on Communications, 1995, vol. 43, no. 12, pp. 2959–2965. doi: 10.1109/26.477498
5. Shirvaikar M.V. An optimal measure for camera focus and exposure. Proc. 36th Southeastern Symposium on System Theory, 2004, pp. 472–475. doi: 10.1109/SSST.2004.1295702
6. Krotkov E. Focusing. International Journal of Computer Vision, 1987, vol. 1, no. 3, pp. 223–237. doi: 10.1007/BF00127822
7. Firestone L., Cook K., Culp K., Talsania N., Preston K. Jr. Comparison of autofocus methods for automated microscopy. Cytometry, 1991, vol. 12, no. 3, pp. 195–206. doi: 10.1002/cyto.990120302
8. Tong H., Li M., Zhang H., Zhang C. Blur detection for digital images using wavelet transform. IEEE Int. Conf. on Multimedia and Expo, ICVE. Taipei, Taiwan, 2004, vol. 1, pp. 17–20. doi: 10.1109/ICME.2004.1394114
9. Su B., Lu S., Tan C.L. Blurred image region detection and classification. Proc. 19th ACM International Conference on Multimedia, MM'11. Scottsdale, USA, 2011, pp. 1397–1400. doi: 10.1145/2072298.2072024
10. Shen C.H., Chen H.H. Robust focus measure for low-contrast images. Proc. IEEE International Conference on Consumer Electronics, ICCE'06. Las Vegas, USA, 2006, pp. 69–70. doi: 10.1109/ICCE.2006.1598314
11. Lee S.-Y., Yoo J.-T., Kumar Y., Kim S.W. Reduced energy-ratio measure for robust autofocusing in digital camera. IEEE Signal Processing Letters, 2009, vol. 16, no. 2, pp. 133–136. doi: 10.1109/LSP.2008.2008938
12. Fusek R., Sojka E., Mozdren K., Surkala M. Energy-transfer features and their application in the task of face detection. Proc. 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2013. Krakow, Poland, 2013, pp. 147–152. doi: 10.1109/AVSS.2013.6636631
13. Huang D., Shan C., Ardabilian M., Wang Y., Chen L. Local binary patterns and its application to facial image analysis: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, vol. 41, no. 6, pp. 765–781. doi: 10.1109/TSMCC.2011.2118750
14. Ojala T., Pietikäinen M., Harwood D. A comparative study of texture measures with classification based on feature distribution. Pattern Recognition, 1996, vol. 29, no. 1, pp. 51–59. doi:10.1016/0031-3203(95)00067-4
15. Ahonen T., Hadid A., Pietikäinen M. Face recognition with local binary patterns. Lecture Notes in Computer Science, 2004, vol. 3021, pp. 469–481.
16. Hadid A., Pietikäinen M., Ahonen T. A discriminative feature space for detecting and recognizing faces. Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, CVPR 2004. Washington, USA, 2004, vol. 2, pp. 797–804. doi: 10.1109/CVPR.2004.1315246
17. Huijsmans D.P., Sebe N. Content-based indexing performance: a class size normalized precision, recall, generality evaluation. Proc. IEEE International Conference on Image Processing, ICIP-2003. Barcelona, Spain, 2003, vol. 3, pp. 733–736.
18. Grangier D., Bengio S. A discriminative kernel-based approach to rank images from text queries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, vol. 30, no. 8, pp. 1371–1384. doi: 10.1109/TPAMI.2007.70791
19. Heikkilaä M., Pietikäinen M. A texture-based method for modelling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, vol. 28, no. 4, pp. 657– 662. doi: 10.1109/tpami.2006.68