Nikiforov
Vladimir O.
D.Sc., Prof.
doi: 10.17586/2226-1494-2017-17-1-31-38
ROBUST CONTROL ALGORITHM FOR MULTIVARIABLE PLANTS WITH QUANTIZED OUTPUT
Read the full article ';
For citation: Margun A.A., Furtat I.B. Robust control algorithm for multivariable plants with quantized output. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 31–38. doi: 10.17586/2226-1494-2017-17-1-31-38
Abstract
The paper deals with robust output control algorithm for multivariable plants under disturbances. A plant is described by the system of linear differential equations with known relative degrees. Plant parameters are unknown but belong to the known closed bounded set. Plant state vector is unmeasured. Plant output is measured only via static quantizer. Control system algorithm is based on the high gain feedback method. Developed controller provides exponential convergence of tracking error to the bounded area. The area bounds depend on quantizer parameters and the value of external disturbances. Experimental approbation of the proposed control algorithm is performed with the use of Twin Rotor MIMO System laboratory bench. This bench is a helicopter like model with two degrees of freedom (pitch and yaw). DC motors are used as actuators. The output signals are measured via optical encoders. Mathematical model of laboratory bench is obtained. Proposed algorithm was compared with proportional - integral – differential controller in conditions of output quantization. Obtained results have confirmed the efficiency of proposed controller.
Acknowledgements. This work was partially financially supported by the Government of the Russian Federation (Grant 074-U01), the Ministry of Education and Science of the Russian Federation (Project 14.Z50.31.0031), the Russian Federation President Grants (No. 14.Y31.16.9281-НШ and No. 14.W01.16.6325-МД (МД-6325.2016.8)).
References