Nikiforov
Vladimir O.
D.Sc., Prof.
doi: 10.17586/2226-1494-2017-17-1-151-158
NUMERICAL SIMULATION OF MASS TRANSFER IN CENTRIFUGAL EVAPORATOR
Read the full article ';
For citation: Kalinin E.N., Gornakov I.P. Numerical simulation of mass transfer in centrifugal evaporator. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 151–158. doi: 10.17586/2226-1494-2017-17-1-151-158
Abstract
Subject of Research. The paper deals with the problem of an adequate mathematical model of mass transfer process occurring during evaporation and concentration of spent process solution in a centrifugal evaporator with variable geometric parameters. The model provides a science-based forecast of the process parameters. Methods. Definition of the film flow parameters on a rotating conical surface of the centrifugal evaporator rotor is carried out on the basis of the solution of Navier-Stokes equations. Solution of the system of differential equations describing the mass transfer process in the studied dynamic system is performed by numerical methods. With this aim in view, we realized semi-implicit finite difference scheme for the SIMPLE pressure. Main Results. We have developed an algorithm and performed numerical solution of differential equations describing the mass transfer process occurring during concentration of the working solution in the centrifugal type evaporator. On the basis of the obtained numerical solution we have created a computer model of the given process. With the aid of the model we have defined basic hydrodynamic and operating parameters of the evaporator, as well as dependencies between them. Practical Relevance. Developed computer model of the mass transfer process enables to define the parameters of the solution moving along the conical surface of the centrifugal evaporator rotor: speed, pressure and the thickness of the flowing-down film. The results can be applied in real industrial process management and during personnel training.
References