DOI: 10.17586/2226-1494-2017-17-1-159-171


A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

M. V. Tchernycheva, S. V. Sychev, A. S. Chirtsov


Read the full article 
Article in Russian

For citation: Tchernycheva M.V., Sychov S.V., Chirtsov A.S. A calculation of semi-empirical one-electron wave functions for multi-electron atoms used for elementary process simulation in nonlocal plasma. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 159–171. doi: 10.17586/2226-1494-2017-17-1-159-171

Abstract

Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others). Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation processes involving heavy particles in different quantum states.


Keywords: multi-electron atoms, one-electron wave functions, self-consistent field, atomic core polarization, Born method, electron impact ionization, electron impact excitation, optimization, genetic algorithms

References
1.     Langmuir I. Oscillations in ionized gases. Proceedings of the National Academy of Sciences, 1928, vol. 14, no. 8, pp. 627–637. doi: 10.1073/pnas.14.8.627
2.     Granovskii V.L. Elektricheskii Tok v Gaze. Ustanovivshiisya Tok [Electric Current in the Gas. Sustained Current]. Moscow, Nauka Publ., 1971, 490 p.
3.     Raizer Yu.P. Fizika Gazovogo Razryada [Gas Discharge Physics]. Dolgoprudnyi, Intellekt Publ., 2009, 736 p.
4.     Kudryavtsev A.A., Smirnov A.S., Tsendin L.D. Fizika Tleyushchego Razryada[Physics of Glow Discharge]. St. Petersburg, Lan' Publ., 2010, 512 p.
5.     BogdanovE.A., Demidov V.I., Kaganovich I.D., Koepke M.E., Kudryavtsev A.A. Modeling a short DC discharge with thermionic cathode and auxiliary anode. Physics of Plasmas, 2013, vol. 20, no. 10, art. 101605. doi: 10.1063/1.4823464
6.     Koepke M.E., Walker J.J., Zimmerman M.I., Farrell W.M., Demidov V.I. Signature of gyro-phase drift.Journal of Plasma Physics,2013, vol. 79, no. 6, pp. 1099–1105. doi: 10.1017/S0022377813001128
7.     Astafiev A.M., Gutsev S.A., Kudryavtsev A.A. Study of the discharge with an electrolytic electrode (Gatchina’s discharge). Vestnik St. Petersburg State University. Ser. 4. Phys. Chem, 2013, no. 4, pp. 139–142. (In Russian)
8.     BogdanovE.A., Kudryavtsev A.A., Ochikova Z.S. Main scenarios of spatial distribution of charged and neutral components in SF6 plasma. IEEE Transactions on Plasma Science, 2013, vol. 41, no. 12, pp. 3254–3267. doi: 10.1109/TPS.2013.2278839
9.     Tchernycheva M.V., Chirtsov A.S., Shvager D.A. Comparative analysis of plasma-chemical models for computer simulation of glow discharges in air mixtures. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 903–916. (In Russian) doi: 10.17586/2226-1494-2016-16-5-903-916
10.  Kaganovich I.D., Demidov V.I., Adams S.F., Raitses Y. Non-local collisionless and collisional electron transport in low-temperature plasma. Plasma Physics and Controlled Fusion, 2009, vol. 51, no. 12, art. 124003. doi: 10.1088/0741-3335/51/12/124003
11.  Tsendin L.D. Electron kinetics in non-uniform glow discharge plasmas. Plasma Sources Science and Technology, 1995, vol. 4, no. 2, pp. 200–211. doi: 10.1088/0963-0252/4/2/004
12.  DeJoseph Jr., C.A., Demidov V.I., Kudryavtsev A.A. Nonlocal effects in a bounded low-temperature plasmas with fast electrons. Physics of Plasmas, 2007, vol. 14, no. 5, art. 057101. doi: 10.1063/1.2436470
13.  WalkerJ.J., Koepke M.E., Zimmerman M.I., Farrell W.M., Demidov V.I. Analytical model for gyro-phase drift arising from abrupt inhomogeneity. Journal of Plasma Physics, 2014, vol. 80, no. 3, pp. 395–404. doi: 10.1017/S0022377813001359
14.  Morgan (Kinema Research & Software)Database. Available at:www.lxcat.net/Morgan (accessed 22.04.2016).
15.  Tuhvatulin A.I., Sysolyatina E.V., Scheblyakov D.V. et. al. Non-thermal plasma causes P53-depended apoptosis in human colon carcinoma cells.Acta Naturae, 2012, vol. 4, no. 3, pp. 82–87.
16.  Stroikova I.K., Maksimov A.I. Disinfecting of solutions by glow and diaphragm discharges at atmospheric pressure. Elektronnaya Obrabotka Materialov, 2002, vol. 38, no. 6, pp. 43–49. (In Russian)
17.  Fromm V. Plasma surface treatment of contact lenses. Vestnik Optometrii, 2010, no. 3, pp. 54–58. (In Russian)
18.  Kalinin L.G., Panchenko G.I., Boshkova I.L., Kolomiichuk S.G. Influence of low-frequency and microwave electromagnetic fields on seeds. Biophysics, 2005, vol. 50, no. 2, pp. 334–337.
19.  Kudryavtsev A.A., Chirtsov A.S., Yakovleva V.I., Mustafaev A.S., Tsyganov A.B. Electron energy spectra in helium observed in a microplasma collisional electron spectroscopy detector. Technical Physics. The Russian Journal of Applied Physics, 2012, vol. 57, no. 10, pp. 1325–1330. doi: 10.1134/S1063784212100106
20.  Eliseev S.I., Kudryavtsev A.A., Liu H., Ning Z., Yu D., Chirtsov A.S. Transition from glow microdischarge to arc discharge with thermionic cathode in argon at atmospheric pressure. IEEE Transactions on Plasma Science, 2016, vol. 44, no. 11, pp. 2536–2544. doi: 10.1109/tps.2016.2557587
21.  Adams S.F., Demidov V.I., Bogdanov E.A., Koepke M.E., Kudryavtsev A.A., Kurlyandskaya I.P. Control of plasma properties in a short direct-current glow discharge with active boundaries. Physics of Plasmas, 2016, vol. 23, no. 10, pp. 109901. doi: 10.1063/1.4941259
22.  Sobel'man I.I. Introduction to the Theory of Atomic Spectra. Moscow, Fizmatlit Publ., 1963, 641 p.
23.  Born M. Atomic Physics. Moscow, Mir Publ., 1967, 493 p. (In Russian)
24.  Vainshtein L.A., Sobel'man I.I., Yukov E.A. Secheniya Vozbuzhdeniya Atomov i Ionov Elektronami [Excitation Cross Sections of Atoms and Ions by Electrons]. Moscow, Nauka Publ., 1973, 142 p.
25.  Ochkur V.I.On the method of Born-Oppenheimer approximation in the theory of atomic collisions. Soviet Physics, 1963, vol. 45, pp. 753–756. (In Russian)
26.  Vainshtein L.A., Presnyakov L.P.Calculation of the optically forbidden collision transitions in the second Born approximation. Trudy Fizicheskogo Instituta AN SSSR, 1970, vol. 51, pp. 90–123.
27.  Mayer I. Theorems, Proofs, and Derivations in Quantum Chemistry. NY, 2003.
28.  Hartree D.R. The Calculation of Atomic Structures. NY: John Wiley and Sons, 1957.
29.  Fok V.A. Nachala Kvantovoi Mekhaniki [Principles of Quantum Mechanics]. Moscow, Nauka Publ., 1976, 376 p.
30.  Messiah A.Mécanique Quantique. Dunod, Paris, 1965.
31.  Vainshtein L.A. Calculation of the wave functions and the oscillator strengths complicated atoms. Trudy Fizicheskogo Instituta AN SSSR, 1961, vol. 15, p. 3.
32.  Landau L.D., Lifshits E.M. Quantum Mechanics (Nonrelativistic Theory). 6th ed. Moscow, Fizmatlit Publ., 2004, vol. 3, 800 p.
33.  Parr R.G., Yang W. Density-Functional Theory of Atoms and Molecules. NY, Oxford University Press, 1989.
34.  Gordeev S.V., Chirtsov A.S. Collisional transitions between distinct spin highly excited levels of atoms of the second group. Vestnik SPbSU. Seriya 4. Fizika. Khimiya, 1991, no. 1, pp. 146–149. (In Russian)
35.  Sychov S., Chirtsov A. Genetic algorithm as a means for solving a radial Schrödinger equations system. Proc. 19th Int. Conf. on Soft Computing and Measurements. St. Petersburg, 2016, pp. 265–267


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика