Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief
Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2017-17-5-952-955
NEW ALGORITHM OF VARIABLE PARAMETERS IDENTIFICATION FOR LINEAR REGRESSION MODEL
Read the full article ';
Article in Russian
For citation: Le Van Tuan, Bobtsov A.A., Pyrkin A.A. New algorithm of variable parameters identification for linear regression model. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 952–955 (in Russian). doi: 10.17586/2226-1494-2017-17-5-952-955
Abstract
For citation: Le Van Tuan, Bobtsov A.A., Pyrkin A.A. New algorithm of variable parameters identification for linear regression model. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 952–955 (in Russian). doi: 10.17586/2226-1494-2017-17-5-952-955
Abstract
This brief paper discusses identification problem of unknown time-varying parameters for a linear regression model. A new algorithm is proposed that guarantees–in case of a set of assumptions existence–an estimate of unknown parameters and their dynamical model with an asymptoticallyzero error. We analyze in details the case with two unknown parameters that enables to understand the main idea of the proposed approach. The efficiency of the algorithm considered in the paper is illustrated by computer modeling.
Keywords: parameters identification, linear regression model, DREM
Acknowledgements. This work is supported by the Russian Science Foundation, project No.16-11-00049.
References
Acknowledgements. This work is supported by the Russian Science Foundation, project No.16-11-00049.
References
1. Aranovskiy S.V., Bobtsov A.A., Pyrkin A.A. Cascade reduction approach for identification problems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 3, pp. 149–150. (In Russian)
2. Ljung L. System Identification: Theory for the User. New Jersey, Prentice-Hall, 1987, 519 p.
3. Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nonlinear and Adaptive Control of Complex Dynamic Systems. St. Petersburg, Nauka Publ., 2000, 549 p.(In Russian)
4. Andrievsky B.R., Fradkov A.L. Izbrannye Glavy Teorii Avtomaticheskogo Upravleniya s Primerami na Yazyke MATLAB [Selected Chapters of Control Theory with Examples in MATLAB]. St. Petersburg, Nauka Publ., 1999, 475 p. (In Russian)
5. Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness. Dover, 2011. 400 p.
6. Pyrkin A., Mancilla F., Ortega R., Bobtsov A., Aranovskiy S. Identification of the current–voltage characteristic of photovoltaic arrays. Proc. 12th IFAC Workshop on Adaptation and Learning in Control and Signal Processing ALCOSP, 2016, vol. 49, no. 13, pp. 223–228. doi: 10.1016/j.ifacol.2016.07.955
7. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Parameters estimation via dynamic regressor extension and mixing. American Control Conference, 2016, pp. 6971–6976. doi: 10.1109/ACC.2016.7526771
8. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Transactions on Automatic Control, 2016, vol. 62, no. 7, pp. 3546–3550. doi: 10.1109/TAC.2016.2614889