doi: 10.17586/2226-1494-2017-17-5-952-955


NEW ALGORITHM OF VARIABLE PARAMETERS IDENTIFICATION FOR LINEAR REGRESSION MODEL

Le Van Tuan, A. A. Bobtsov, A. A. Pyrkin


Read the full article  ';
Article in Russian

For citation: Le Van Tuan, Bobtsov A.A., Pyrkin A.A. New algorithm of variable parameters identification for linear regression model. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 952–955 (in Russian). doi: 10.17586/2226-1494-2017-17-5-952-955

Abstract

 This brief paper discusses identification problem of unknown time-varying parameters for a linear regression model. A new algorithm is proposed that guarantees–in case of a set of assumptions existence–an estimate of unknown parameters and their dynamical model with an asymptoticallyzero error. We analyze in details the case with two unknown parameters that enables to understand the main idea of the proposed approach. The efficiency of the algorithm considered in the paper is illustrated by computer modeling.


Keywords: parameters identification, linear regression model, DREM

Acknowledgements. This work is supported by the Russian Science Foundation, project No.16-11-00049.

References
 1.     Aranovskiy S.V., Bobtsov A.A., Pyrkin A.A. Cascade reduction approach for identification problems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 3, pp. 149–150. (In Russian)
2.     Ljung L. System Identification: Theory for the User. New Jersey, Prentice-Hall, 1987, 519 p.
3.     Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nonlinear and Adaptive Control of Complex Dynamic Systems. St. Petersburg, Nauka Publ., 2000, 549 p.(In Russian)
4.     Andrievsky B.R., Fradkov A.L. Izbrannye Glavy Teorii Avtomaticheskogo Upravleniya s Primerami na Yazyke MATLAB [Selected Chapters of Control Theory with Examples in MATLAB]. St. Petersburg, Nauka Publ., 1999, 475 p. (In Russian)
5.     Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness. Dover, 2011. 400 p.
6.     Pyrkin A., Mancilla F., Ortega R., Bobtsov A., Aranovskiy S. Identification of the current–voltage characteristic of photovoltaic arrays. Proc. 12th IFAC Workshop on Adaptation and Learning in Control and Signal Processing ALCOSP, 2016, vol. 49, no. 13, pp. 223–228. doi: 10.1016/j.ifacol.2016.07.955 
7.     Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Parameters estimation via dynamic regressor extension and mixing. American Control Conference, 2016, pp. 6971–6976. doi: 10.1109/ACC.2016.7526771
8.     Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Transactions on Automatic Control, 2016, vol. 62, no. 7, pp. 3546–3550. doi: 10.1109/TAC.2016.2614889


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика