doi: 10.17586/2226-1494-2021-21-2-179-190


The modal sensitivity, robustness and roughness of dynamic systems
(review article)

R. O. Omorov


Read the full article  ';
Article in Russian

For citation:

Omorov R.O. The modal sensitivity, robustness and roughness of dynamic systems (review article). Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 2, pp. 179–190 (in Russian). doi: 10.17586/2226-1494-2021-21-2-179-190



Abstract

The review focuses on the development of theories of sensitivity and modal sensitivity, robustness and roughness of dynamic systems. In modern theory of dynamic systems and automatic control systems, there is a need to study the properties of sensitivity, robustness and roughness of systems in their interconnection. An import application of sensitivity theory is associated with the design and creation of high-precision and low-sensitivity systems. The most significant results were achieved in the development of differential methods for the analysis and synthesis of low-sensitivity systems. One approach to the analysis and synthesis of linear systems of low parametric sensitivity in the space of states was developed using the functions of modal sensitivity or, in other words, the method of modal sensitivity. A review of robustness theory considers methods of studying and ensuring the robust stability of interval dynamical systems, paying attention to both algebraic and frequency directions of robust stability. The work presents the main results of the original algebraic method of robust stability of interval dynamical systems for continuous and discrete time. The section “Basic development stages of the theory of roughness of systems” describes the main principles of the theory and method of topological roughness of dynamical systems, based on the concept of roughness according to Andronov–Pontryagin. Applications of the topological roughness method to synergetic systems and chaos have been used to investigate many systems, such as the Lorenz and Rössler attractors, the Belousov–Zhabotinsky, Chua, predator-prey, Hopf bifurcation, Schumpeter and Caldor economic systems, etc. The review proposes applying the approach of analogies of theoretical-multiple topology and the abstract method for studying weakly formalized and informal systems. Further research suggests the development of theories of sensitivity, robustness, roughness and bifurcation for complex nonlinear dynamic


Keywords: modal sensitivity, modal sensitivity function method, matrix condition number method, robustness, roughness of dynamic systems, interval dynamic system, bifurcation, synergetic system and chaos, method of topological roughness, special trajectories, special points, Sylvester matrix equation

References
  1. Bode H.W. Network Analysis and Feedback Amplifier Design. New York, D. Van Nostrand Company, 1945, 551 p.
  2. Rozenvasser E.N., Iusupov R.M. Sensitivity of Automatic Control Systems. Moscow, Jenergija Publ., 1969, 264 с. (in Russian)
  3. Tomovic R., Vucobratovic M. General Sensitivity Theory. North-Holland, 1972, 258 p.
  4. Cruz J.B., Perkins W.B. A new approach to the sensitivity problem in multivariable feedback system design. IEEE Transactions on Automatic Control, 1964, vol. 9, no. 3, pp. 216–223. doi: 10.1109/TAC.1964.1105720
  5. Kokotovich P. Sensitivity points method in investigation and optimization of linear control systems. Avtomatika i Telemekhanika, 1964, vol. 25, no. 12, pp. 1670–1676. (in Russian)
  6. Eslami M. Theory of Sensitivity in Dynamic Systems: An Introduction. Berlin, Heidelberg, Springer-Verlag, 1994, 600 p.
  7. Omorov R.O. Development and Study of Photoelectric Tracking Systems with Low Parametric Sensitivity. Dissertation abstract for the degree of candidate of technical sciences. Leningrad, Leningrad Institute of Fine Mechanics and Optics, 1985, 21 p. (in Russian)
  8. Ushakov A.V., Omorov R.O. Estimation of potential parametric sensitivity of a desired dynamic model in the task of modal control. Russian Electromechanics, 1982, no. 7, pp. 800–805. (in Russian)
  9. Ushakov A.V., Omorov R.O. Estimation of potential parametric sensitivity of linear control objects according to the degree of their. Russian Electromechanics, 1984, no. 8, pp. 53–58. (in Russian)
  10. Kharitonov V.L. The asymptotic stability of the equilibrium state of a family of systems of linear differential equations. Differential Equations, 1978, vol. 14, no. 11, pp. 2086–2088. (in Russian)
  11. Kharitonov V.L. On a generalization of a stability criterion. Izvestija AN Kazahskoj SSR. Serija fiziko-matematicheskaja, 1978, no. 1, pp. 53–57. (in Russian)
  12. Poliak B.T., Tcypkin Ya.Z. Robust stability of linear systems. Itogi nauki i tehniki. Tehnicheskaja kibernetika, 1991, vol. 32, pp. 3–31. (inRussian)
  13. Neimark Y.I. Robust stability and D-partition. Automation and Remote Control, 1992, vol. 53, no. 7, pp. 957–965.
  14. Omorov R.O. Robustness of interval dynamic systems I. Robustness in continuous linear interval dynamic systems. Journal of Computer and Systems Sciences International, 1996, vol. 34, no. 3, pp. 69–74.
  15. Omorov R.O. Robustness of interval dynamical systems. II. Robustness of discrete linear interval dynamical systems. Journal of Computer and Systems Sciences International, 1996, vol. 34, no. 4, pp. 1–5.
  16. Poincaré H. Mémoire sur les courbes définies par une équation différentielle. Journal de Mathématiques Pures et Appliquées. 1881-1886. (in French)
  17. Andronov A.A., Pontriagin L.S. Structurally stable systems. Doklady AN SSSR, 1937, vol. 14, no. 5, pp. 247–250. (inRussian)
  18. Anosov D.V. Structurally stable systems. Proceedings of the Steklov Institute of Mathematics, 1986, vol. 169, pp. 61–95.
  19. Omorov R.O. Estimation of roughness of controllable dynamic systems. Russian Electromechanics, 1990, no. 7, pp. 81–87. (in Russian)
  20. Omorov R.O. Maximal robustness of dynamical systems. Automation and Remote Control, 1991, vol. 52, no. 8, pp. 1061–1068.
  21. Omorov R.O. Measure of roughness of dynamic systems and criteria of emergence of chaotic fluctuations and bifurcations in synergetic systems. Synthesis of algorithms of systems stabilization: department proceedings. Issue 8. Taganrog, 1992, pp. 128–134. (in Russian)
  22. Omorov R.O. Dynamical System Quantitative Robustness Measures and Their Applications to Control Systems. Dissertation for the degree of doctor of technical sciences, St. Petersburg, Saint Petersburg Institute of Fine Mechanics and Optics, 1992, 188 p. (in Russian)
  23. Omorov R.O. Synergetic systems: problems of roughness, bifurcations and accidents. Nauka i novye tehnologii, 1997, no. 2, pp. 26–36. (in Russian)
  24. Omorov R.O. Method of topological roughness: theory and appendices. I. Theory. Izvestija Nacional'noj Akademii nauk Kyrgyzskoj Respubliki, 2009, no. 3, pp. 144–148. (in Russian)
  25. Omorov R.O. Topological roughness of synergetic systems. Journal of Automation and Information Sciences, 2012, vol. 44, no. 4, pp. 61–70. doi: 10.1615/JAutomatInfScien.v44.i4.70
  26. Omorov R.O. Theory of Topological Roughness of Systems. Bishkek, Ilim Publ., 2019, 288 p. (in Russian)
  27. Rozenvasser E.N., Iusupov R.M. Sensitivity of Control Systems. Moscow, Nauka Publ., 1981, 464 p. (in Russian)
  28. Meerov M.V. Synthesis of Structures of Automatic Control Systems with High Precision. Moscow, Nauka Publ., 1967, 423 p. (in Russian)
  29. Petrov B.N., Krutko P.D. Sensitivity theory in automatic control. Izvestija AN SSSR. Tehnicheskaja kibernetika, 1970, no. 2, pp. 202–212. (in Russian)
  30. Petrov B.N., Rutkovskii V.Iu., Zemliakov S.D. Adaptive Coordinate-Parametric Control of the Nonstationary Plants. Moscow, Nauka Publ., 1980, 242 p. (in Russian)
  31. Bermant M.A., Emelianov S.V., Petrov B.N., Utkin V.I. Sensitivity of automatic control systems with variable structure. Sensitivity of Automatic Systems. Moscow, Nauka Publ., 1968, pp. 181–191. (in Russian)
  32. Utkin V.I., Emelianov S.V., Taran V.A. Theory of Variable Structure Systems. Moscow, Nauka Publ., 1970, 592 p. (in Russian)
  33. Utkin V.I. Sliding Regimes and Their Applications in Variable-Structure Systems. Moscow, Nauka Publ., 1974, 272 p. (in Russian)
  34. Kreindler E. Closed-loop sensitivity of linear optimal control systems. IEEE Transactions on Automatic Control, 1968, vol. 13, no. 3, pp. 254–262. doi: 10.1109/TAC.1968.1098901
  35. Mita T. Design of a zero-sensitive system. International Journal of Control, 1976, vol. 24, no. 1, pp. 75–81. doi: 10.1080/00207177608932806
  36. Omorov R.O. Development and Study of Photoelectric Tracking Systems with Low Parametric Sensitivity. Dissertation for the degree of candidate of technical sciences. Leningrad, Leningrad Institute of Fine Mechanics and Optics, 1985, 263 p. (in Russian)
  37. Ushakov A.V., Omorov R.O. Application of modal sensitivity to estimating dynamic systems precision. A report on the All-Union coordination meeting dedicated to adaptation problems and 11th seminar on adaptive systems (Frunze. April 16-25, 1982). Avtomatikaitelemehanika, 1983, no. 9, pp. 171. (inRussian)
  38. Baev A.P., Omorov R.O., Ushakov A.V. Estimates of transition functions in linear multidimensional control systems. Russian Electromechanics, 1989, no. 1, pp. 90–96. (in Russian)
  39. Omorov R.O., Ushakov A.V. Robustness estimates in control and observation tasks. Russian Electromechanics, 1991, no. 1, pp. 78–85. (in Russian)
  40. Kuzovkov N.T. Modal Control and Observers. Moscow, Mashinostroenie Publ., 1976, 184 p. (in Russian)
  41. Akunov T.A., Alisherov S., Omorov R.O., Ushakov A.V. Matrix Equations in Control and Continuous Monitoring Objects. Bishkek, Ilim Publ.,1991, 61 p. (in Russian)
  42. Akunov T.A., Alisherov S., Omorov R.O., Ushakov A.V. Modal Estimations of Quality of Processes in Linear Multivarible Systems. Bishkek, Ilim Publ.,1991, 59 p. (in Russian)
  43. Grigorev V.V., Mansurova O.K., Ushakov A.V. Synthesis and analysis of multidimentional systems by modal control. Optimal and Adaptive Systems. Frunze, 1979, pp. 62–68. (in Russian)
  44. Grigorev V.V., Drozdov V.N., Lavrentev V.V., Ushakov A.V. Synthesis of Discrete Controllers Using Computers. Leningrad, Mashinostroenie Publ., 1983, 245 p. (in Russian)
  45. Nikiforov V.O., Ushakov A.V. Control in the Presence of Uncertainties: Sensitivity, Adaptation and Robustness. St. Petersburg, ITMO, 2002, 232 p. (in Russian)
  46. Omorov R.O. Sensitivity, Robustness and Roughness of Dynamic Systems. Moscow, LENAND Publ., 2021, 304 p. (in Russian)
  47. Ushakov A.V. Conditions of zero parametric sensitivity in the tracking problem. Automation and Remote Control, 1981, vol. 42, no. 9, pp. 1157–1163.
  48. Akunov T.A., Ushakov A.V. Sensitivity analysis of ellipsoidal quality estimates of multidimensional control processes. Journal of Instrument Engineering, 1991, vol. 34, no. 8, pp. 21–27. (in Russian)
  49. Akunov T.A., Slita O.V., Ushakov A.V. Gramians in parametric invariance of continuous systems. Scientific and Technical Bulletin of St. Petersburg State University of Information Technologies, Mechanics and Optics, 2005, vol. 5, no. 3, pp. 39–43. (in Russian)
  50. Dorato P.D. A historical review of robust control. IEEE Control Systems Magazine, 1987, vol. 7, no. 2, pp. 44–47. doi: 10.1109/MCS.1987.1105273
  51. Jury E.I. Robustness of a discrete system. Automation and Remote Control, 1990, vol. 51, no. 5, pp. 571–592.
  52. Discussion on robustness problem in control systems. Avtomatika i Telemkhanika, 1992, no. 1, pp. 165–176. (inRussian)
  53. Nikiforov V.O. Robust output control for a linear object. Automation and Remote Control, 1998, vol. 59, no. 9, pp. 1274–1283.
  54. Pelevin A.Ye. Robust control law synthesis under uncertainty of model parameters. Journal “Giroskopiya i Navigatsiya”, 1999, no. 2(25), pp. 63–74. (in Russian)
  55. Gusev Yu.M., Yefanov V.N., Krymskiy V.G., Rutkovskiy V.Yu. Analysis and synthesis of linear interval dynamic systems (the state of the problem). I. Analysis which uses interval characteristic polynomials. Soviet journal of computer and systems sciences, 1991, vol. 29, no. 6, pp. 84–103.
  56. Gusev Yu.M., Yefanov V.N., Krymskiy V.G., Rutkovskiy V.Yu Analysis and synthesis of linear interval dynamical systems (the state of the problem). II. Analysis of the stability of interval matrices and synthesis of robust regulators. Soviet journal of computer and systems sciences, 1992, vol. 30, no. 2, pp. 26–52.
  57. Polyak B.T., Shcherbakov P.S. Superstable linear control systems. I. Analysis. Automation and Remote Control, 2002, vol. 63, no. 8, pp. 1239–1254. doi: 10.1023/A:1019823208592
  58. Kuntsevich V.M. Management under Conditions of Uncertainty: Guaranteed Results in Management and Identification Issues. Kiev, Naukova dumka Publ., 2006, 264 p. (in Russian)
  59. Barmish B.R., Hollot C.V. Counter-example to a recent result on the stability of interval matrices by S. Bialas. International Journal of Control, 1984, vol. 39, no. 5, pp. 1103–1104. doi: 10.1080/00207178408933235
  60. Barmish B.R., Fu M., Saleh S. Stability of a polytope of matrices: Counterexamples. IEEE Transactions on Automatic Control, 1988, vol. 33, no. 6, pp. 569–572. doi: 10.1109/9.1254
  61. Bialas S. A necessary and sufficient condition for the stability of interval matrices. International Journal of Control, 1983, vol. 37, no. 4, pp. 717–722. doi: 10.1080/00207178308933004
  62. Kraus F.J., Anderson B.D.O., Jury E.I., Mansour M. On the robustness of low-order Schur polynomials. IEEE Transactions on Circuits and Systems, 1988, vol. 35, no. 5, pp. 570–577. doi: 10.1109/31.1786
  63. Mansour M., Kraus F.J. On Robust Stability of Sсhur Polynomials. Report N 87-05, Inst. Autom. Cont. Ind. Electronics, Swiss, Fed. Inst. Tech. (ETH), Züric, 1987, 34 p.
  64. Omorov R.O. Robustness research of interval dynamic systems by algebraic method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 3, pp. 364–370. (in Russian). doi: 10.17586/2226-1494-2020-20-3-364-370
  65. Omorov R.O. On discrete analogue of Kharitonov's theorem. Science and New Technologies, 2002, no. 3, pp. 5–10. (in Russian)
  66. Omorov R.O. Robust Stability of Interval Dynamic Systems. Bishkek, Ilim Publ., 2018, 104 p. (in Russian)
  67. Omorov R.O. Robustness of interval dynamic systems. Proc. of the Conference “Mathematical Control Theory and Its Applications”, St. Petersburg, October 7-8, 2020. St. Petersburg, Concern CSRI Elektropribor, 2020, pp. 333–335.(in Russian)
  68. Omorov R.O. Method of topological roughness of dynamic systems: applications to synergetic systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 2, pp. 257–262. (in Russian). doi: 10.17586/2226-1494-2020-20-2-257-262
  69. Haken H. Advanced Synergetics. Berlin, Springer, 1983.
  70. Nicolis G., Prigogine I. Exploring Complexity: An Introduction. W.H. Freeman Publ., 1989, 313 p.
  71. Strange attractors. Moscow, Mir Publ., 1981, 253 p. (in Russian)
  72. Zhang W.-B. Synergetic Economics: Time and Change in Nonlinear Economics. Springer-Verlag, 1991, 246 p.
  73. Kapitca S.P., Kurdiumov S.P., Malinetckii G.G. Synergetics and Future Forecasts. Moscow, URSS Publ., 2001, 288 p. (in Russian)
  74. Leonov G.A., Kuznetsov N.V., Kudryashova E.V. Tunisia 2011-2014. Bifurcation, revolution, and controlled stabilization. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika informatika protsessy upravleniya, 2016, no. 4, pp. 92–103. (in Russian). doi: 10.21638/11701/spbu10.2016.409
  75. Andrievskii B.R., Fradkov A.L. Control of chaos: methods and applications. I. Methods. Automation and Remote Control, 2003, vol. 64, no. 5, pp. 673–713. doi: 10.1023/A:1023684619933
  76. Kolesnikov A.A. Synergetic Control Methods for Complex Systems: System Synthesis Theory. Moscow, LIBROKOM Publ., 2012, 240 p. (in Russian)
  77. Peixoto M.M. On structural stability. Annals of Mathematics, 1959, vol. 69, no. 1, pp. 199–222. doi: 10.2307/1970100
  78. Omorov R.O. Topological roughness and bifurcations of synergetic systems. Proc. of the Conference “Mathematical Control Theory and Its Applications”, St. Petersburg, October 7-8, 2020. St. Petersburg, Concern CSRI Elektropribor, 2020, pp. 28–30.(in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика