doi: 10.17586/2226-1494-2021-21-6-858-865


An algorithm of trajectory control for the movement of a mobile robot without measuring the position coordinates

D. Hoang, A. A. Pyrkin


Read the full article  ';
Article in Russian

For citation:
Hoang D.T., Pyrkin A.A. An algorithm of trajectory control for the movement of a mobile robot without measuring the position coordinates. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 6, pp. 858–865 (in Russian). doi: 10.17586/2226-1494-2021-21-6-858-865


Abstract
The paper considers the problem of controlling the movement of a mobile robot along a given smooth trajectory without measuring its position coordinates. To solve the problem, an adaptive observer of the local coordinates of a moving object is used by measuring the linear speed, yaw angle, and range to a beacon with known coordinates. Then the minimum distance from the robot to the given smooth trajectory is determined. Based on the estimates for the coordinates of the robot and the distance to the curve, we synthesized the control law of the movement along the trajectory with the desired speed under the conditions of uncertainty of the mathematical model. The motion control algorithm is based on the robust sequential compensator method, which ensures that the deviations of the robot from a given trajectory are limited. The proposed coordinate observer ensures asymptotic convergence of the estimation errors to zero. In this paper, we propose two algorithms for determining the minimum distance from the robot to the trajectory: an exact analytical calculation and a nonlinear observer that guarantees the convergence of the estimate to the true value in an arbitrarily short time. The trajectory regulator ensures the movement of the robot along a given trajectory with a limited error. The application of the proposed approach allows one to solve the issues of controlling the movement of a mobile robot without measuring the position coordinates. The approach can be widely applied for controlling self-driving vehicles when they run in tunnels or under a bridge, where it is not possible to measure their coordinates using the satellite navigation systems (GLONASS or GPS).

Keywords: robust control, trajectory control, mobile robot, single-beacon navigation, sequential compensator, observer of nonlinear systems, state estimation method

Acknowledgements. This paper was supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment No. 2019-0898).

References
  1. Stepanov O.A. Methods for Navigation Measuring Data Processing. Tutorial. St. Petersburg, ITMO University, 2017, 198 p. (in Russian)
  2. GLONASS. Principles of Construction and Operation. Ed. by A.I. Perov, V.N. Kharisov. 4th ed. Moscow, Radiotehnika Publ., 2010, 800 p. (in Russian)
  3. Caballero F., Merino L., Ferruz J., Ollero A. Vision-based odometry and SLAM for medium and high altitude flying UAVs. Journal of Intelligent and Robotic Systems, 2009, vol. 54, no. 1-3, pp. 37–161. https://doi.org/10.1007/s10846-008-9257-y
  4. Markelov V.V., Shukalov A.V., Kostishin M.O., Zharinov I.O., Zharinov O.O. Modeling of non-platform inertial navigation system as a component of aircraft navigation computer stand. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 903–909. (in Russian). https://doi.org/10.17586/2226-1494-2017-17-5-903-909
  5. Koshaev D.A. Multiple Model Algorithm for Single-Beacon Navigation of Autonomous Underwater Vehicle without Its A Priori Position. Part 1. Mathematical Formulation. Gyroscopy and Navigation, 2020, vol. 11, no. 3, pp. 230–243. https://doi.org/10.1134/S2075108720030037
  6. Ferreira B., Matos A., Cruz N. Single Beacon Navigation: Localization and Control of the MARES AUV. Proc. of OCEANS‘10 MTS/IEEE, 2010, pp. 5664518. https://doi.org/10.1109/OCEANS.2010.5664518
  7. Stepanov O.A., Vasiliev V.A., Toropov A.B., Loparev A.V., Basin М.V. Efficiency analysis of a filtering algorithm for discrete-time linear stochastic systems with polynomial measurements. Journal of the Franklin Institute, 2019, vol. 356, no. 10, pp. 5573–5591. https://doi.org/10.1016/j.jfranklin.2019.02.036
  8. Burdakov S.F., Miroshnik I.V., Stelmakov R.E. Wheeled Robot Motion Control Systems. St. Petersburg, Nauka Publ., 2001, 232 p. (in Russian)
  9. Miroshnik I.V., Chepinskii S.A. Trajectory control of kinematic mechanisms with non-trivial construction. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2004, no. 3(14), pp. 4–10. (in Russian)
  10. Kapitanyuk Y.A., Chepinsky S.A. Control of mobile robot following a piecewise-smooth path. Gyroscopy and Navigation, 2013, vol. 4, no. 4, pp. 198–203. https://doi.org/10.1134/S207510871304007X
  11. Miroshnik I.V., Nikiforov V.O. Trajectory motion control and coordination of multi-link robots. IFAC Proceedings Volumes, 1996, vol. 29, no. 1, pp. 361–366. https://doi.org/10.1016/S1474-6670(17)57688-0
  12. Bushuev A.B., Isaeva E.G., Morozov S.N., Chepinsky S.A. Control over trajectory motion of multichannel dynamic system.Journal of Instrument Engineering, 2009, vol. 52, no. 11, pp. 50–56. (in Russian)
  13. Breivik M., Fossen T.I. Principles of guidance-based path following in 2D and 3D. Proc. of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC'05, 2005, pp. 627–634. https://doi.org/10.1109/CDC.2005.1582226
  14. Lee T., Leok M., McClamroch N.H. Geometric tracking control of a quadrotor UAV on SE(3). Proceedings of the 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 5420–5425. https://doi.org/10.1109/CDC.2010.5717652
  15. Bobtsov A.A., Nikolaev N.A. Fradkov theorem-based design of the control of nonlinear systems with functional and parametric uncertainties. Automation and Remote Control, 2005, vol. 66, no. 1, pp. 108–118. https://doi.org/10.1007/s10513-005-0010-8
  16. Bobtsov A.A. Robust output-control for a linear system with uncertain coefficients. Automation and Remote Control, 2002, vol. 63, no. 11, pp. 1794–1802. https://doi.org/10.1023/A:1020907415730
  17. Pyrkin A., Bobtsov A., Kolyubin S., Surov M., Shavetov S., Borisov O., Gromov V. Simple output stabilization approach for robotic systems. IFAC Proceedings Volumes, 2013, vol. 46, no. 9, pp. 1873–1878. https://doi.org/10.3182/20130619-3-RU-3018.00288
  18. Pyrkin A.A., Bobtsov A.A., Kolyubin S.A., Faronov M.V., Shavetov S.V., Kapitanyuk Y.A., Kapitonov A.A. Output control approach "consecutive compensator" providing exponential and L∞-stability for nonlinear systems with delay and disturbance. Proc. of the 20th IEEE International Conference on Control Applications, 2011, pp. 1499–1504. https://doi.org/10.1109/CCA.2011.6044373
  19. Pyrkin A., Bobtsov A., Ortega R., Vedyakov A., Aranovskiy S. Adaptive state observers using dynamic regressor extension and mixing. Systems & Control Letters, 2019, vol. 133, pp. 104519. https://doi.org/10.1016/j.sysconle.2019.104519
  20. Ortega R., Bobtsov A., Pyrkin A., Aranovskiy S. A parameter estimation approach to state observation of nonlinear systems. Systems & Control Letters, 2015, vol. 85, pp. 84–94. https://doi.org/10.1016/j.sysconle.2015.09.008
  21. Hoang Duc Thinh, Pyrkin A.A. Trajectory control of a mobile robot under conditions of uncertainty. Journal of Instrument Engineering, 2021, vol. 64, no. 8, pp. 608–619. (in Russian). https://doi.org/10.17586/0021-3454-2021-64-8-608-619


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика