УДК538.913 538.971

АБЛЯЦИЯ ТВЕРДОГО ТЕЛА ПОД ДЕЙСТВИЕМ СВЕРХКОРОТКИХ ЛАЗЕРНЫХ ИМПУЛЬСОВ: ИССЛЕДОВАНИЕ МЕТОДАМИ МОЛЕКУЛЯРНОЙ ДИНАМИКИ

Иванов Д.С., Вейко В.П., Яковлев Е.Б., Гарсия М.Э., Ретфельд Б.


Читать статью полностью 

Аннотация

 Методами молекулярной динамики исследован процесс лазерной абляции при воздействии на металлы сверхкоротких лазерных импульсов. Выясняется действенность и применимость гибридной атомистически-непрерывной модели для оценки оптимальных режимов обработки сверхкороткими лазерными импульсами. Предложено сочетание атомистической модели лазерно-индуцированного процесса неравновесного фазового перехода на атомном уровне с непрерывной двухтемпературной моделью для описания динамики фотовозбуждения свободных носителей. Показана применимость модели лазерной абляции на примере пленок алюминия и золота при воздействии импульсов с различной плотностью энергии и длительностью. Показано, что в зависимости от соотношения длительности лазерного импульса и характерного времени электрон-фононного взаимодействия материала реализуются фототермический и фотомеханический режимы разрушения, которые определяют качество и производительность лазерной обработки. Установлено, что при длительности лазерного импульса меньше времени электрон-фононного взаимодействия реализуется высокопроизводительный фотомеханический характер разрушения за счет возникших в области воздействия внутренних напряжений. Это подтверждается линейной  зависимостью скорости абляции от поглощенной энергии. При длительности лазерного импульса больше времени электрон-фононного взаимодействия реализуется малопроизводительный фототермический режим разрушения. Результаты работы могут быть полезны специалистам, занимающимся разработкой лазерных технологий. 


Ключевые слова:  лазерная абляция, сверхкороткие лазерные импульсы, молекулярная динамика, фототермическое разрушение, фотомеханическое разрушение

Благодарности. Работа выполнена при поддержке гранта Президента Российской Федерации НШ-1364.2014.2, грантов РФФИ 12-02-01194, 13-02-00033, 13-02-00971 и при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-U01) и грантов DFG IV 122/1-1 и IV 122/1-2

Список литературы
1. Mezzapesa F.P., Sibillano T., Columbo L.L., Di Niso F., Ancona A., Dabbicco M., De Lucia F., Lugarà P.M., Scamarcio G. Direct investigation of the ablation rate evolution during laser drilling of high aspect ratio micro-holes // Proceedings of SPIE - The International Society for Optical Engineering. 2012. V. 8243. Art. 82430S.
2. Lo Turco S., Nava G., Osellame R., Vishnubhatla K.C., Ramponi R. Femtosecond laser micromachining for optofluidic and energy applications // Optical Materials. 2013. V. 36. N 1. P. 102–105.
3. Rizvi N.H. Femtosecond laser micromachining: current status and applications // Riken Review. 2003. V. 50. P. 107–112.
4. Wellershoff S.-S., Hohlfeld J., Gudde J., Matthias E. The role of electron-phonon coupling in femtosecond laser damage of metals // Applied Physics A: Materials Science and Processing. 1999. V. 69. N 7. P. S99– S107.
5. Ivanov D.S., Zhigilei L.V. Combined atomistic-continuum modelling of short-pulse laser melting and disintegration of metal films // Physical Review B – Condensed Matter and Materials Physics. 2003. V. 68. N 6. Art. 064114. P. 064114-1–064114-22.
6. Nolte S., Momma C., Jacobs H., Tunnemann A., Chichkov B.N., Wellegehausen B., Welling H. Ablation of metals by ultrashort laser pulses // Journal of Optical Society of America B: Optical Physics. 1997. V. 14. N 10. P. 2716–2722.
7. Mannion P.T., Favre S., Ivanov D.S., O’Connor G.M., Glynn T.J. Experimental investigation of micromachining on metals with pulse durations in the range of the electron-phonon relaxation time (pico to subpicosecond) // Proc. 3rd International WLT-Conference on Lasers Manufacturing. Munich, 2005. P. 521– 526.
8. Momma C., Nolte S., Chichkov B.N., Alvensleben F.V., Tunnerbaum A. Precise laser ablation with ultrashort pulses // Applied Surface Science. 1997. V. 109–110. P. 15–19.
9. Toenshoff H.K., Ostendorf A., Nolte S., Korte F., Bauer T. Micromachining using femtosecond lasers // Proceedings of SPIE – Laser Precision Manufacturing 2000 Conference. Omiya, Japan, 2000. P. 136–139.
10. Leveugle E., Ivanov D.S., Zhigilei L.V. Photomechanical spallation of molecular and metal targets: molecular dynamics study // Applied Physics A: Materials Science and Processing. 2004. V. 79. N 7. P. 1643–1655.
11. Zhigilei L.V., Lin Z., Ivanov D.S. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion // Journal of Physical Chemistry C. 2009. V. 113. N 27. P. 11892–11906.
12. Ivanov D.S., Rethfeld B.C. The effect of pulse duration on the interplay of electron heat conduction and electron-photon interaction: photo-mechanical versus photo-thermal damage of metal targets // Applied Surface Science. 2009. V. 255. N 24. P. 9724–9728.
13. Ivanov D.S., Lipp V.P., Rethfeld B., Garcia M.E. Molecular-dynamics study of the mechanism of shortpulse laser ablation of singlecrystal and polycrystalline metallic targets // Journal of Optical Technology. 2014. V. 81. N 5. P. 250–253.
14. Zhigilei L.V., Ivanov D.S. Channels of energy redistribution in short-pulse laser interactions with metal targets // Applied Surface Science. 2005. V. 248. N 1–4. P. 433–439.
15. Anisimov S.I., Rethfeld B. On the theory of ultrashort laser pulse interaction with a metal // Proc. SPIE. 1997. V. 3093. P. 192–203.
16. Lin Z., Zhigilei L.V., Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium // Physical Review B - Condensed Matter and Materials Physics. 2008. V. 77. N 7. Art. 075133.
17. Povarnitsyn M.E., Andreev N.E., Apfelbaum E.M., Itina T.E., Khishchenko K.V., Kostenko O.F., Levashov P.R., Veysman M.E. A wide-range model for simulation of pump-probe experiments with metals // Applied Surface Science. 2012. V. 258. N 23. P. 9480–9483.
18. Ivanov D.S., Kuznetsov A.I., Lipp V.P., Rethfeld B., Chichkov B.N., Garcia M.E., Schulz W. Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment // Applied Physics A: Materials Science and Processing. 2013. V. 111. P. 675–687.
19. Zhakhovskii V.V., Inogamov N.A., Petrov Yu.V., Ashitkov S.I., Nishihara K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials // Applied Surface Science. 2009. V. 255. N 24. P. 9592–9596.
20. Wu C., Zhigilei L.V. Microscopic mechanism of laser spallation and ablation of metal targets from largescale molecular dynamics simulations // Applied Physics A: Materials Science and Processing. 2014. V. 114. N 1. P. 11–32.
21. Schäfer C., Urbassek H.M., Zhigilei L.V., Garrison B.J. Pressure-transmitting boundary conditions for molecular dynamics simulations // Computational Materials Science. 2002. V. 24. N 4. P. 421–429.
22. Zhigilei L.V., Ivanov D.S., Leveugle E., Sadigh B., Bringa E.M. Computer modeling of laser melting and spallation of metal targets // Proceedings of SPIE – The International Society for Optical Engineering. 2004. V. 5448. P. 505–519.
23. Anisimov S.I., Kapeliovich B.L., Perel'man T.L. Electron 


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2019 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика