УДК581.787

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК СИГНАЛОВ СПЕКТРАЛЬНОЙ ИНТЕРФЕРЕНЦИИ В БЛИЖНЕЙ ИК ОБЛАСТИ СПЕКТРА

Гуров И.П.


Читать статью полностью 

Аннотация

Рассмотрены особенности формирования сигналов в спектральной интерферометрии и оптической когерентной томографии. Приведены основные соотношения, определяющие минимальное значение координаты по глубине исследуемого объекта, на которой регистрируется один период сигнала спектральной интерференции и устанавливаемое значение приращения по длине волны с учетом диапазона глубин, в котором регистрируются сигналы спектральной интерференции. Дана оценка разрешающей способности систем спектральной интерферометрии и оптической когерентной томографии с перестраиваемой длиной волны с учетом спектрального диапазона перестройки длины волны. Показано, что отношение среднего значения длины волны к диапазону перестройки по длине волны определяет разрешающую способность по глубине исследуемого объекта, тогда как максимальный диапазон по глубине, в котором возможно исследование микроструктуры объекта при помощи метода спектральной оптической когерентной томографии, не зависит от диапазона перестройки по длине волны и определяется шагом перестройки по длине волны (волновому числу). Представлены количественные оценки указанных параметров при использовании источников излучения в ближнем ИК диапазоне спектра, а также соотношения для оценки видности интерференционных полос в зависимости от регистрируемой относительной интенсивности измерительной волны.


Ключевые слова: спектральная интерферометрия, оптическая когерентная томография, перестраиваемая длина волны

Список литературы
1. Vienot J.-C., Goedgebuer J.-P., Lacourt A. Space and time variables in optics and holography: recent experimental aspects // Applied Optics. 1977. V. 16. N 2. P. 454–461.
2. Emde M.F., de Boeij W.P., Pshenichnikov M.S., Wiersma D.A. Spectral interferometry as an alternative to time-domain heterodyning // Optics Lett. 1997. V. 22. N 17. P. 1338–1340.
3. Hlubina P., Gurov I., Chugunov V. Slightly dispersive white-light spectral interferometry to measure distances and displacements // Optik. 2003. V. 114. N 9. P. 389–393.
4. Reolon D., Jacquot M., Verrier I., Brun G., Veillas C. Broadband supercontinuum interferometer for highresolution profilometry // Optics Express. 2006. V. 14. N 1. P. 128–137.
5. Kumar V.N., Rao D.N. Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials // J. Opt. Soc. Am. B. 1995. V. 12. N 9. P. 1559–1563.
6. Hlubina P., Lunacek J., Ciprian D. White-light spectral interferometry and reflectometry to measure thickness of thin films // Proc. of SPIE. 2009. V. 7389. P. 738926-1–738926-8.
7. Iaconis C., Walmsley I.A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses // Optics Lett. 1998. V. 23. N 10. P. 792–794.
8. Yetzbacher M.K., Courtney T.L., Peters W.K. Spectral restoration for femtosecond spectral interferometry with attosecond accuracy // J. Opt. Soc. Am. B. 2010. V. 27. N 5. P. 1104–1117.
9. Hlubina P., Gurov I., Chugunov V. White-light spectral interferometric technique to measure the wavelength dependence of the spectral bandpass of a fibre-optic spectrometer // J. Mod. Optics. 2003. V. 50. N 13. P. 2067–2074. Lepetit L., Chériaux G., Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy // J. Opt. Soc. Am. B. 1995. V. 12. N 12. P. 2467– 2474.
10. Lepetit L., Chériaux G., Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy // J. Opt. Soc. Am. B. 1995. V. 12. N 12. P. 2467–2474.
11. Albrecht A.W., Hybl J.D., Gallagher S.M., Jonas D.M. Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions // J. Chem. Phys. 1999. V. 111. P. 10934–10956.
12. Oldenburg A.L., Xu C., Boppart S.A. Spectroscopic optical coherence tomography and microscopy // IEEE J. Select. Topics Quantum Electron. 2007. V. 13. N 6. P. 1629–1640.
13. Verrier I., Jacquot M., Brun G., Veillas C., Ben Houcine K. Imaging through scattering medium by recording 3D «spatial-frequential» interferograms // Optics Commun. 2006. V. 267. N 2. P. 310–317.
14. Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography // Optics Express. 2003. V. 11. N 18. P. 2183–2189.
15. Васильев В.Н., Гуров И.П. Сравнительный анализ методов оптической когерентной томографии // Изв. вузов. Приборостроение. 2007. Т. 50. № 7. С. 30–40.
16. Гуров И.П., Волынский М.А., Жукова Е.В., Маргарянц Н.Б. Исследование растительных тканей мето- дом оптической когерентной микроскопии // Научно-технический вестник информационных техноло- гий, механики и оптики. 2012. № 5 (81). С. 42–47.
17. Hillmann D., Bonin T., Lührs C., Franke G., Hagen-Eggert M., Koch P., Hüttmann G. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT // Optics Express. 2012. V. 20. N 6. P. 6761–6776.
18. Wong A., Mishra A., Bizheva K., Clausi D.A. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery // Optics Express. 2010. V. 18. N 8. P. 8338–8352.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2019 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика